Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.019
Filter
1.
J Comp Neurol ; 532(2): e25591, 2024 02.
Article in English | MEDLINE | ID: mdl-38375612

ABSTRACT

Intrinsically photosensitive retinal ganglion cells (ipRGCs) are specialized retinal output neurons that mediate behavioral, neuroendocrine, and developmental responses to environmental light. There are diverse molecular strategies for marking ipRGCs, especially in mice, making them among the best characterized retinal ganglion cells (RGCs). With the development of more sensitive reporters, new subtypes of ipRGCs have emerged. We therefore tested high-sensitivity reporter systems to see whether we could reveal yet more. Substantial confusion remains about which of the available methods, if any, label all and only ipRGCs. Here, we compared many different methods for labeling of ipRGCs, including anti-melanopsin immunofluorescence, Opn4-GFP BAC transgenic mice, and Opn4cre mice crossed with three different Cre-specific reporters (Z/EG, Ai9, and Ai14) or injected with Cre-dependent (DIO) AAV2. We show that Opn4cre mice, when crossed with sensitive Cre-reporter mice, label numerous ganglion cell types that lack intrinsic photosensitivity. Though other methods label ipRGCs specifically, they do not label the entire population of ipRGCs. We conclude that no existing method labels all and only ipRGCs. We assess the appropriateness of each reporter for particular applications and integrate findings across reporters to estimate that the overall abundance of ipRGCs among mouse RGCs may approach 11%.


Subject(s)
Retinal Ganglion Cells , Rod Opsins , Mice , Animals , Retinal Ganglion Cells/physiology , Rod Opsins/genetics , Rod Opsins/metabolism , Mice, Transgenic , Light
2.
PLoS Biol ; 22(1): e3002464, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38206904

ABSTRACT

Trichromacy is unique to primates among placental mammals, enabled by blue (short/S), green (medium/M), and red (long/L) cones. In humans, great apes, and Old World monkeys, cones make a poorly understood choice between M and L cone subtype fates. To determine mechanisms specifying M and L cones, we developed an approach to visualize expression of the highly similar M- and L-opsin mRNAs. M-opsin was observed before L-opsin expression during early human eye development, suggesting that M cones are generated before L cones. In adult human tissue, the early-developing central retina contained a mix of M and L cones compared to the late-developing peripheral region, which contained a high proportion of L cones. Retinoic acid (RA)-synthesizing enzymes are highly expressed early in retinal development. High RA signaling early was sufficient to promote M cone fate and suppress L cone fate in retinal organoids. Across a human population sample, natural variation in the ratios of M and L cone subtypes was associated with a noncoding polymorphism in the NR2F2 gene, a mediator of RA signaling. Our data suggest that RA promotes M cone fate early in development to generate the pattern of M and L cones across the human retina.


Subject(s)
Placenta , Tretinoin , Pregnancy , Adult , Animals , Humans , Female , Tretinoin/metabolism , Placenta/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Retina/metabolism , Opsins/metabolism , Rod Opsins/genetics , Primates , Mammals/metabolism
3.
Exp Dermatol ; 33(1): e15007, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38284195

ABSTRACT

Human amniotic epithelial stem cells (hAESCs) are regarded as potential alternatives to keratinocytes (KCs) used for skin wound healing. Light is an alternative approach for inducing stem cell differentiation. Opsins (OPNs), a family of light-sensitive, G protein-coupled receptors, play a multitude of light-dependent and light-independent functions in extraocular tissues. However, it remains unclear whether the light sensitivity and function of OPNs are involved in light-induced differentiation of hAESCs to KCs. Herein, we determine the role of OPNs in differentiation of hAESCs into KCs through cell and molecular biology approaches in vitro. It is shown that mRNA expression of OPN3 in the amniotic membrane and hAESCs was higher than the other four primary OPNs by RT-qPCR analysis. Changes in OPN3 gene expression had a significant impact on cell proliferation, stemness and differentiation capability of hAESCs. Furthermore, we found a significant upregulation of OPN3, KRT5 and KRT14 with hAESCs treated at 3 × 33 J/cm2 irradiation from blue-light LED. Taken together, these results suggest that OPN3 acts as a positive regulator of differentiation of hAESCs into KCs. This study provides a novel insight into photosensitive OPNs associated with photobiomodulation(PBM)-induced differentiation in stem cells.


Subject(s)
Keratinocytes , Receptors, G-Protein-Coupled , Rod Opsins , Humans , Cell Differentiation , Cell Proliferation , Keratinocytes/metabolism , Receptors, G-Protein-Coupled/genetics , Rod Opsins/genetics , Rod Opsins/metabolism , Stem Cells/metabolism
4.
BMC Med Genomics ; 17(1): 26, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38243290

ABSTRACT

BACKGROUND: To compare the expression levels of long non-coding RNA (lncRNA) and messenger RNA (mRNA) in pre-receptive endometrium between patients with Polycystic Ovary Syndrome (PCOS)and normal ovulation undergoing in vitro fertilization-embryo transfer (IVF-ET). METHODS: Endometrial tissues were collected with endometrial vacuum curette in pre-receptive phase (3 days after oocytes retrieval) from PCOS and control groups. LncRNAs and mRNAs of endometrium were identified via RNA sequencing and alignments. A subset of 9 differentially expressed lncRNAs and 11 mRNAs were validated by quantitative reverse transcription polymerase chain reaction(qRT-PCR)in 22 PCOS patients and 18 ovulation patients. The function of mRNAs with differential expression patterns were explored using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). RESULTS: We found out 687 up-regulated and 680 down-regulated mRNAs, as well as 345 up-regulated and 63 down-regulated lncRNAs in the PCOS patients in contrast to normal ovulation patients. qRT-PCR was used to detect the expression of 11 mRNAs, and validated that the expression of these 6 mRNAs CXCR4, RABL6, OPN3, SYBU, IDH1, NOP10 were significantly elevated among PCOS patients, and the expression of ZEB1 was significantly decreased. qRT-PCR was performed to detect the expression of 9 lncRNAs, and validated that the expression of these 7 lncRNAs IDH1-AS1, PCAT14, FTX, DANCR, PRKCQ-AS1, SNHG8, TPT1-AS1 were significantly enhanced among PCOS patients. Bioinformatics analysis showed that differentially expressed genes (DEGs) involved KEGG pathway were tyrosine metabolism, PI3K-Akt pathway, metabolic pathway, Jak-STAT pathway, pyruvate metabolism, protein processing in endoplasmic reticulum, oxidative phosphorylation and proteasome. The up-regulation of GO classification was involved in ATP metabolic process, oxidative phosphorylation, RNA catabolic process, and down-regulation of GO classification was response to corticosteroid, steroid hormone, and T cell activation. CONCLUSION: Our results determined the characteristics and expression profile of endometrial lncRNAs and mRNAs in PCOS patients in pre-receptive phase, which is the day 3 after oocytes retrival. The possible pathways and related genes of endometrial receptivity disorders were found, and those lncRNAs may be developed as a predictive biomarker of endometrium in pre-receptive phase.


Subject(s)
Polycystic Ovary Syndrome , RNA, Long Noncoding , Humans , Female , RNA, Messenger/metabolism , RNA, Long Noncoding/metabolism , Polycystic Ovary Syndrome/genetics , Janus Kinases/genetics , Janus Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Signal Transduction , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , Gene Expression Profiling , Embryo Transfer , Endometrium/metabolism , Fertilization in Vitro , Gene Regulatory Networks , Rod Opsins/genetics , Rod Opsins/metabolism
5.
Pflugers Arch ; 475(12): 1387-1407, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38036775

ABSTRACT

Animal opsins are light activated G-protein-coupled receptors, capable of optogenetic control of G-protein signalling for research or therapeutic applications. Animal opsins offer excellent photosensitivity, but their temporal resolution can be limited by long photoresponse duration when expressed outside their native cellular environment. Here, we explore methods for addressing this limitation for a prototypical animal opsin (human rod opsin) in HEK293T cells. We find that the application of the canonical rhodopsin kinase (GRK1)/visual arrestin signal termination mechanism to this problem is complicated by a generalised suppressive effect of GRK1 expression. This attenuation can be overcome using phosphorylation-independent mutants of arrestin, especially when these are tethered to the opsin protein. We further show that point mutations targeting the Schiff base stability of the opsin can also reduce signalling lifetime. Finally, we apply one such mutation (E122Q) to improve the temporal fidelity of restored visual responses following ectopic opsin expression in the inner retina of a mouse model of retinal degeneration (rd1). Our results reveal that these two strategies (targeting either arrestin binding or Schiff-base hydrolysis) can produce more time-delimited opsin signalling under heterologous expression and establish the potential of this approach to improve optogenetic performance.


Subject(s)
Opsins , Rod Opsins , Animals , Mice , Humans , Rod Opsins/genetics , Rod Opsins/metabolism , Opsins/genetics , Opsins/metabolism , Optogenetics/methods , HEK293 Cells , Arrestins/genetics , Arrestins/metabolism
6.
Mol Biol Evol ; 40(11)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37935057

ABSTRACT

Color vision in insects is determined by signaling cascades, central to which are opsin proteins, resulting in sensitivity to light at different wavelengths. In certain insect groups, lineage-specific evolution of opsin genes, in terms of copy number, shifts in expression patterns, and functional amino acid substitutions, has resulted in changes in color vision with subsequent behavioral and niche adaptations. Lepidoptera are a fascinating model to address whether evolutionary change in opsin content and sequence evolution are associated with changes in vision phenotype. Until recently, the lack of high-quality genome data representing broad sampling across the lepidopteran phylogeny has greatly limited our ability to accurately address this question. Here, we annotate opsin genes in 219 lepidopteran genomes representing 33 families, reconstruct their evolutionary history, and analyze shifts in selective pressures and expression between genes and species. We discover 44 duplication events in opsin genes across ∼300 million years of lepidopteran evolution. While many duplication events are species or family specific, we find retention of an ancient long-wavelength-sensitive (LW) opsin duplication derived by retrotransposition within the speciose superfamily Noctuoidea (in the families Nolidae, Erebidae, and Noctuidae). This conserved LW retrogene shows life stage-specific expression suggesting visual sensitivities or other sensory functions specific to the early larval stage. This study provides a comprehensive order-wide view of opsin evolution across Lepidoptera, showcasing high rates of opsin duplications and changes in expression patterns.


Subject(s)
Color Vision , Lepidoptera , Humans , Animals , Opsins/genetics , Gene Duplication , Lepidoptera/genetics , Evolution, Molecular , Rod Opsins/chemistry , Rod Opsins/genetics , Insecta/genetics , Phylogeny , Gene Expression
7.
Mol Biol Evol ; 40(10)2023 10 04.
Article in English | MEDLINE | ID: mdl-37791477

ABSTRACT

Amphibians are ideal for studying visual system evolution because their biphasic (aquatic and terrestrial) life history and ecological diversity expose them to a broad range of visual conditions. Here, we evaluate signatures of selection on visual opsin genes across Neotropical anurans and focus on three diurnal clades that are well-known for the concurrence of conspicuous colors and chemical defense (i.e., aposematism): poison frogs (Dendrobatidae), Harlequin toads (Bufonidae: Atelopus), and pumpkin toadlets (Brachycephalidae: Brachycephalus). We found evidence of positive selection on 44 amino acid sites in LWS, SWS1, SWS2, and RH1 opsin genes, of which one in LWS and two in RH1 have been previously identified as spectral tuning sites in other vertebrates. Given that anurans have mostly nocturnal habits, the patterns of selection revealed new sites that might be important in spectral tuning for frogs, potentially for adaptation to diurnal habits and for color-based intraspecific communication. Furthermore, we provide evidence that SWS2, normally expressed in rod cells in frogs and some salamanders, has likely been lost in the ancestor of Dendrobatidae, suggesting that under low-light levels, dendrobatids have inferior wavelength discrimination compared to other frogs. This loss might follow the origin of diurnal activity in dendrobatids and could have implications for their behavior. Our analyses show that assessments of opsin diversification in across taxa could expand our understanding of the role of sensory system evolution in ecological adaptation.


Subject(s)
Opsins , Poisons , Animals , Opsins/genetics , Phylogeny , Rod Opsins/genetics
8.
Commun Biol ; 6(1): 1054, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37853054

ABSTRACT

Melanopsin (OPN4) is a light-sensitive protein that plays a vital role in the regulation of circadian rhythms and other nonvisual functions. Current research on OPN4 has focused on mammals; more evidence is needed from non-mammalian vertebrates to fully assess the significance of the non-visual photosensitization of OPN4 for circadian rhythm regulation. There are species differences in the regulatory mechanisms of OPN4 for vertebrate circadian rhythms, which may be due to the differences in the cutting variants, tissue localization, and photosensitive activation pathway of OPN4. We here summarize the distribution of OPN4 in mammals, birds, and teleost fish, and the classical excitation mode for the non-visual photosensitive function of OPN4 in mammals is discussed. In addition, the role of OPN4-expressing cells in regulating circadian rhythm in different vertebrates is highlighted, and the potential rhythmic regulatory effects of various neuropeptides or neurotransmitters expressed in mammalian OPN4-expressing ganglion cells are summarized among them.


Subject(s)
Circadian Rhythm , Rod Opsins , Animals , Circadian Rhythm/physiology , Rod Opsins/genetics , Rod Opsins/metabolism , Vertebrates/metabolism , Mammals
9.
Sci Rep ; 13(1): 15697, 2023 09 21.
Article in English | MEDLINE | ID: mdl-37735192

ABSTRACT

Vertebrate color vision is predominantly mediated by the presence of multiple cone photoreceptor subtypes that are each maximally sensitive to different wavelengths of light. Thyroid hormone (TH) has been shown to be essential in the spatiotemporal patterning of cone subtypes in many species, including cone subtypes that express opsins that are encoded by tandemly replicated genes. TH has been shown to differentially regulate the tandemly replicated lws opsin genes in zebrafish, and exogenous treatments alter the expression levels of these genes in larvae and juveniles. In this study, we sought to determine whether gene expression in cone photoreceptors remains plastic to TH treatment in adults. We used a transgenic lws reporter line, multiplexed fluorescence hybridization chain reaction in situ hybridization, and qPCR to examine the extent to which cone gene expression can be altered by TH in adults. Our studies revealed that opsin gene expression, and the expression of other photoreceptor genes, remains plastic to TH treatment in adult zebrafish. In addition to retinal plasticity, exogenous TH treatment alters skin pigmentation patterns in adult zebrafish after 5 days. Taken together, our results show a remarkable level of TH-sensitive plasticity in the adult zebrafish.


Subject(s)
Retinal Cone Photoreceptor Cells , Zebrafish , Animals , Zebrafish/genetics , Retina , Opsins/genetics , Rod Opsins/genetics , Thyroid Hormones/pharmacology
10.
BMC Biol ; 21(1): 146, 2023 06 26.
Article in English | MEDLINE | ID: mdl-37365544

ABSTRACT

BACKGROUND: The mammalian retina contains an autonomous circadian clock that controls various aspects of retinal physiology and function, including dopamine (DA) release by amacrine cells. This neurotransmitter plays a critical role in retina development, visual signalling, and phase resetting of the retinal clock in adulthood. Interestingly, bidirectional regulation between dopaminergic cells and melanopsin-expressing retinal ganglion cells has been demonstrated in the adult and during development. Additionally, the adult melanopsin knockout mouse (Opn4 -/-) exhibits a shortening of the endogenous period of the retinal clock. However, whether DA and / or melanopsin influence the retinal clock mechanism during its maturation is still unknown. RESULTS: Using wild-type Per2 Luc and melanopsin knockout (Opn4 -/-::Per2 Luc) mice at different postnatal stages, we found that the retina generates self-sustained circadian rhythms from postnatal day 5 in both genotypes and that the ability to express these rhythms emerges in the absence of external time cues. Intriguingly, only in wild-type explants, DA supplementation lengthened the endogenous period of the clock during the first week of postnatal development through both D1- and D2-like dopaminergic receptors. Furthermore, the blockade of spontaneous cholinergic retinal waves, which drive DA release in the early developmental stages, shortened the period and reduced the light-induced phase shift of the retinal clock only in wild-type retinas. CONCLUSIONS: These data suggest that DA modulates the molecular core of the clock through melanopsin-dependent regulation of acetylcholine retinal waves, thus offering an unprecedented role of DA and melanopsin in the endogenous functioning and the light response of the retinal clock during development.


Subject(s)
Dopamine , Retina , Animals , Mice , Cholinergic Agents , Circadian Rhythm/physiology , Light , Mice, Knockout , Retinal Ganglion Cells/physiology , Rod Opsins/genetics
11.
Int J Mol Sci ; 24(10)2023 May 15.
Article in English | MEDLINE | ID: mdl-37240129

ABSTRACT

The medaka (Oryzias latipes) is an excellent vertebrate model for studying the development of the retina. Its genome database is complete, and the number of opsin genes is relatively small compared to zebrafish. Short wavelength sensitive 2 (sws2), a G-protein-coupled receptor expressed in the retina, has been lost in mammals, but its role in eye development in fish is still poorly understood. In this study, we established a sws2a and sws2b knockout medaka model by CRISPR/Cas9 technology. We discovered that medaka sws2a and sws2b are mainly expressed in the eyes and may be regulated by growth differentiation factor 6a (gdf6a). Compared with the WT, sws2a-/- and sws2b-/- mutant larvae displayed an increase in swimming speed during the changes from light to dark. We also observed that sws2a-/- and sws2b-/- larvae both swam faster than WT in the first 10 s of the 2 min light period. The enhanced vision-guided behavior in sws2a-/- and sws2b-/- medaka larvae may be related to the upregulation of phototransduction-related genes. Additionally, we also found that sws2b affects the expression of eye development genes, while sws2a is unaffected. Together, these findings indicate that sws2a and sws2b knockouts increase vision-guided behavior and phototransduction, but on the other hand, sws2b plays an important role in regulating eye development genes. This study provides data for further understanding of the role of sws2a and sws2b in medaka retina development.


Subject(s)
Oryzias , Animals , Oryzias/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Opsins/genetics , Rod Opsins/genetics , Retina/metabolism , Mammals/metabolism , Zebrafish Proteins/metabolism , Growth Differentiation Factor 6
12.
J Photochem Photobiol B ; 242: 112702, 2023 May.
Article in English | MEDLINE | ID: mdl-37018912

ABSTRACT

The presence of melanopsin (OPN4) has been shown in cultured murine melanocytes and was associated with ultraviolet A radiation (UVA) reception. Here we demonstrated the protective role of OPN4 in skin physiology and the increased UVA-induced damage in its absence. Histological analysis showed a thicker dermis and thinner hypodermal white adipose tissue layer in Opn4-/- (KO) mice than in wild-type (WT) animals. Proteomics analyses revealed molecular signatures associated with proteolysis, remodeling chromatin, DNA damage response (DDR), immune response, and oxidative stress coupled with antioxidant responses in the skin of Opn4 KO mice compared to WT. Skin protein variants were found in Opn4 KO mice and Opn2, Opn3, and Opn5 gene expressions were increased in the genotype. We investigated each genotype response to UVA stimulus (100 kJ/m2). We found an increase of Opn4 gene expression following stimulus on the skin of WT mice suggesting melanopsin as a UVA sensor. Proteomics findings suggest that UVA decreases DDR pathways associated with ROS accumulation and lipid peroxidation in the skin of Opn4 KO mice. Relative changes in methylation (H3-K79) and acetylation sites of histone between genotypes and differentially modulated by UVA stimulus were also observed. We also identified alterations of molecular traits of the central hypothalamus-pituitary- adrenal (HPA) and the skin HPA-like axes in the absence of OPN4. Higher skin corticosterone levels were detected in UVA-stimulated Opn4 KO compared to irradiated WT mice. Taken altogether, functional proteomics associated with gene expression experiments allowed a high-throughput evaluation that suggests an important protective role of OPN4 in regulating skin physiology in the presence and absence of UVA radiation.


Subject(s)
Rod Opsins , Skin , Animals , Mice , Homeostasis , Melanocytes/metabolism , Membrane Proteins/metabolism , Rod Opsins/genetics , Rod Opsins/metabolism , Skin/metabolism , Ultraviolet Rays/adverse effects
13.
Vision Res ; 208: 108221, 2023 07.
Article in English | MEDLINE | ID: mdl-37001420

ABSTRACT

Blue cone monochromacy (BCM) is a congenital vision disorder characterized by complete loss or severely reduced long- and middle-wavelength cone function, caused by mutations in the OPN1LW/OPN1MW gene cluster on the X-chromosome. BCM patients typically suffer from poor visual acuity, severely impaired color discrimination, myopia, and nystagmus. In this review, we cover the genetic causes of BCM, clinical features of BCM patients, genetic testing, and clinical outcome measurements for future BCM clinical trials. However, our emphasis is on detailing the animal models for BCM and gene therapy using adeno-associated vectors (AAV). We describe two mouse models resembling the two most common causes of BCM, current progress in proof-of-concept studies to treat BCM with deletion mutations, the challenges we face, and future directions.


Subject(s)
Color Vision Defects , Animals , Mice , Color Vision Defects/genetics , Color Vision Defects/therapy , Mutation , Genetic Therapy , Retinal Cone Photoreceptor Cells , Rod Opsins/genetics
14.
Nat Commun ; 14(1): 1492, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36932080

ABSTRACT

Visual input to the hypothalamus from intrinsically photosensitive retinal ganglion cells (ipRGCs) influences several functions including circadian entrainment, body temperature, and sleep. ipRGCs also project to nuclei such as the supraoptic nucleus (SON), which is involved in systemic fluid homeostasis, maternal behavior, social behaviors, and appetite. However, little is known about the SON-projecting ipRGCs or their relationship to well-characterized ipRGC subtypes. Using a GlyT2Cre mouse line, we show a subtype of ipRGCs restricted to the dorsal retina that selectively projects to the SON. These ipRGCs tile a dorsal region of the retina, forming a substrate for encoding ground luminance. Optogenetic activation of their axons demonstrates they release the neurotransmitter glutamate in multiple regions, including the suprachiasmatic nucleus (SCN) and SON. Our results challenge the idea that ipRGC dendrites overlap to optimize photon capture and suggests non-image forming vision operates to sample local regions of the visual field to influence diverse behaviors.


Subject(s)
Retina , Supraoptic Nucleus , Female , Mice , Animals , Supraoptic Nucleus/metabolism , Retina/metabolism , Retinal Ganglion Cells/physiology , Rod Opsins/genetics
15.
Mol Ther ; 31(7): 2014-2027, 2023 07 05.
Article in English | MEDLINE | ID: mdl-36932675

ABSTRACT

Blue cone monochromacy (BCM) is a rare X-linked retinal disease characterized by the absence of L- and M-opsin in cone photoreceptors, considered a potential gene therapy candidate. However, most experimental ocular gene therapies utilize subretinal vector injection which would pose a risk to the fragile central retinal structure of BCM patients. Here we describe the use of ADVM-062, a vector optimized for cone-specific expression of human L-opsin and administered using a single intravitreal (IVT) injection. Pharmacological activity of ADVM-062 was established in gerbils, whose cone-rich retina naturally lacks L-opsin. A single IVT administration dose of ADVM-062 effectively transduced gerbil cone photoreceptors and produced a de novo response to long-wavelength stimuli. To identify potential first-in-human doses we evaluated ADVM-062 in non-human primates. Cone-specific expression of ADVM-062 in primates was confirmed using ADVM-062.myc, a vector engineered with the same regulatory elements as ADVM-062. Enumeration of human OPN1LW.myc-positive cones demonstrated that doses ≥3 × 1010 vg/eye resulted in transduction of 18%-85% of foveal cones. A Good Laboratory Practice (GLP) toxicology study established that IVT administration of ADVM-062 was well tolerated at doses that could potentially achieve clinically meaningful effect, thus supporting the potential of ADVM-062 as a one-time IVT gene therapy for BCM.


Subject(s)
Opsins , Retinal Cone Photoreceptor Cells , Animals , Humans , Retinal Cone Photoreceptor Cells/metabolism , Opsins/genetics , Primates/genetics , Primates/metabolism , Rod Opsins/genetics , Rod Opsins/metabolism , Genetic Therapy/methods
16.
Mol Biol Evol ; 40(2)2023 02 03.
Article in English | MEDLINE | ID: mdl-36721951

ABSTRACT

The evolutionary history of visual genes in Coleoptera differs from other well-studied insect orders, such as Lepidoptera and Diptera, as beetles have lost the widely conserved short-wavelength (SW) insect opsin gene that typically underpins sensitivity to blue light (∼440 nm). Duplications of the ancestral ultraviolet (UV) and long-wavelength (LW) opsins have occurred in many beetle lineages and have been proposed as an evolutionary route for expanded spectral sensitivity. The jewel beetles (Buprestidae) are a highly ecologically diverse and colorful family of beetles that use color cues for mate and host detection. In addition, there is evidence that buprestids have complex spectral sensitivity with up to five photoreceptor classes. Previous work suggested that opsin duplication and subfunctionalization of the two ancestral buprestid opsins, UV and LW, has expanded sensitivity to different regions of the light spectrum, but this has not yet been tested. We show that both duplications are likely unique to Buprestidae or the wider superfamily of Buprestoidea. To directly test photopigment sensitivity, we expressed buprestid opsins from two Chrysochroa species in Drosophila melanogaster and functionally characterized each photopigment type as UV- (356-357 nm), blue- (431-442 nm), green- (507-509 nm), and orange-sensitive (572-584 nm). As these novel opsin duplicates result in significantly shifted spectral sensitivities from the ancestral copies, we explored spectral tuning at four candidate sites using site-directed mutagenesis. This is the first study to directly test opsin spectral tuning mechanisms in the diverse and specious beetles.


Subject(s)
Coleoptera , Opsins , Animals , Opsins/genetics , Coleoptera/genetics , Drosophila melanogaster/genetics , Rod Opsins/genetics , Insecta , Phylogeny
17.
Endocrinology ; 164(3)2023 01 09.
Article in English | MEDLINE | ID: mdl-36631163

ABSTRACT

The function of a hormone receptor requires mechanisms to control precisely where, when, and at what level the receptor gene is expressed. An intriguing case concerns the selective induction of thyroid hormone receptor ß2 (TRß2), encoded by Thrb, in the pituitary and also in cone photoreceptors, in which it critically regulates expression of the opsin photopigments that mediate color vision. Here, we investigate the physiological significance of a candidate enhancer for induction of TRß2 by mutagenesis of a conserved intron region in its natural context in the endogenous Thrb gene in mice. Mutation of e-box sites for bHLH (basic-helix-loop-helix) transcription factors preferentially impairs TRß2 expression in cones whereas mutation of nearby sequences preferentially impairs expression in pituitary. A deletion encompassing all sites impairs expression in both tissues, indicating bifunctional activity. In cones, the e-box mutations disrupt chromatin acetylation, blunt the developmental induction of TRß2, and ultimately impair cone opsin expression and sensitivity to longer wavelengths of light. These results demonstrate the necessity of studying an enhancer in its natural chromosomal context for defining biological relevance and reveal surprisingly critical nuances of level and timing of enhancer function. Our findings illustrate the influence of noncoding sequences over thyroid hormone functions.


Subject(s)
Receptors, Thyroid Hormone , Retinal Cone Photoreceptor Cells , Mice , Animals , Retinal Cone Photoreceptor Cells/metabolism , Receptors, Thyroid Hormone/genetics , Receptors, Thyroid Hormone/metabolism , Thyroid Hormones/metabolism , Rod Opsins/genetics , Rod Opsins/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Mutation
18.
Dev Biol ; 493: 40-66, 2023 01.
Article in English | MEDLINE | ID: mdl-36370769

ABSTRACT

Many animals depend on the sense of vision for survival. In eumetazoans, vision requires specialized, light-sensitive cells called photoreceptors. Light reaches the photoreceptors and triggers the excitation of light-detecting proteins called opsins. Here, we describe the story of visual opsin evolution from the ancestral bilaterian to the extant vertebrate lineages. We explain the mechanisms determining color vision of extant vertebrates, focusing on opsin gene losses, duplications, and the expression regulation of vertebrate opsins. We describe the sequence variation both within and between species that has tweaked the sensitivities of opsin proteins towards different wavelengths of light. We provide an extensive resource of wavelength sensitivities and mutations that have diverged light sensitivity in many vertebrate species and predict how these mutations were accumulated in each lineage based on parsimony. We suggest possible natural and sexual selection mechanisms underlying these spectral differences. Understanding how molecular changes allow for functional adaptation of animals to different environments is a major goal in the field, and therefore identifying mutations affecting vision and their relationship to photic selection pressures is imperative. The goal of this review is to provide a comprehensive overview of our current understanding of opsin evolution in vertebrates.


Subject(s)
Evolution, Molecular , Opsins , Animals , Opsins/genetics , Opsins/metabolism , Phylogeny , Vertebrates/genetics , Vertebrates/metabolism , Rod Opsins/genetics
19.
Mol Ecol ; 32(1): 167-181, 2023 01.
Article in English | MEDLINE | ID: mdl-36261875

ABSTRACT

The visual capabilities of fish are optimized for their ecology and light environment over evolutionary time. Similarly, fish vision can adapt to regular changes in light conditions within their lifetime, e.g., ontogenetic or seasonal variation. However, we do not fully understand how vision responds to irregular short-term changes in the light environment, e.g., algal blooms and light pollution. In this study, we investigated the effect of short-term exposure to unnatural light conditions on opsin gene expression and retinal cell densities in juvenile and adult diurnal reef fish (convict surgeonfish; Acanthurus triostegus). Results revealed phenotypic plasticity in the retina across ontogeny, particularly during development. The most substantial differences at both molecular and cellular levels were found under constant dim light, while constant bright light and simulated artificial light at night had a lesser effect. Under dim light, juveniles and adults increased absolute expression of the cone opsin genes, sws2a, rh2c and lws, within a few days and juveniles also decreased densities of cones, inner nuclear layer cells and ganglion cells. These changes potentially enhanced vision under the altered light conditions. Thus, our study suggests that plasticity mainly comes into play when conditions are extremely different to the species' natural light environment, i.e., a diurnal fish in "constant night". Finally, in a rescue experiment on adults, shifts in opsin expression were reverted within 24 h. Overall, our study showed rapid, reversible light-induced changes in the retina of A. triostegus, demonstrating phenotypic plasticity in the visual system of a reef fish throughout life.


Subject(s)
Light , Perciformes , Animals , Fishes/genetics , Vision, Ocular/genetics , Retina/metabolism , Perciformes/genetics , Opsins/genetics , Opsins/metabolism , Rod Opsins/genetics
20.
Proc Natl Acad Sci U S A ; 119(49): e2209884119, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36454759

ABSTRACT

Cone photoreceptor diversity allows detection of wavelength information in light, the first step in color (chromatic) vision. In most mammals, cones express opsin photopigments for sensitivity to medium/long (M, "green") or short (S, "blue") wavelengths and are differentially arrayed over the retina. Cones appear early in retinal neurogenesis but little is understood of the subsequent control of diversity of these postmitotic neurons, because cone populations are sparse and, apart from opsins, poorly defined. It is also a challenge to distinguish potentially subtle differences between cell subtypes within a lineage. Therefore, we derived a Cre driver to isolate individual M and S opsin-enriched cones, which are distributed in counter-gradients over the mouse retina. Fine resolution transcriptome analyses identified expression gradients for groups of genes. The postnatal emergence of gradients indicated divergent differentiation of cone precursors during maturation. Using genetic tagging, we demonstrated a role for thyroid hormone receptor ß2 (TRß2) in control of gradient genes, many of which are enriched for TRß2 binding sites and TRß2-regulated open chromatin. Deletion of TRß2 resulted in poorly distinguished cones regardless of retinal location. We suggest that TRß2 controls a bipotential transcriptional state to promote cone diversity and the chromatic potential of the species.


Subject(s)
Receptors, Thyroid Hormone , Retinal Cone Photoreceptor Cells , Animals , Mice , Gene Expression Regulation , Opsins/genetics , Retina , Rod Opsins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...